摸骨、看相、寻找遗传密码…何以追溯人类祖先家谱
发布时间:2020-04-10
出品:科普中国
制作:栗静舒(中国科学院古脊椎动物与古人类研究所)
监制:中国科学院计算机网络信息中心

  你的家里,是否有一本泛黄的家谱?里面记载的许多名字虽然陌生,但其承载的个体与你有着亲密的血缘关系。

  普通人的家谱往前追溯三五辈,就往往让后人感到复杂难辨。那些古人类学家,纵跨百万年甚至更长时间尺度,横览扑朔迷离的亲缘关系,仅凭一些散落的残骸断骨,又如何编写人类祖先的“家谱”?

  第一步 摸骨、看相

  化石保存至今,往往被复杂的埋藏过程改造得支离破碎,所以研究者获取到的多是零星的人骨片段,诸如几颗牙齿(中学历史教科书开篇提到的元谋人,实际上就是根据两颗牙齿而命名的),胳膊或者大腿骨,脚趾头,手指头……对于化石的观察、种属与部位鉴定、测量与比较,是研究人类遗骸的第一步。

  

  元谋人牙齿(百度百科)

  据说,古人类学家贾兰坡先生有个习惯,常常在兜里揣几块人类化石,反复地摸索与感受,以增进对古人类骨骼的了解。虽然现在的学者不再被允许将化石揣到兜里,但是识骨寻踪的基本功训练绝不可免。如果连人和动物化石都傻傻分不清,是大腿还是胳膊的问题也没弄明白,那么何谈下一步的研究。

  当然,如果足够幸运地发掘出完整的遗骸,那么就可以轻松愉快地完成第一步了。可惜天公不作美,这种送分题出现的概率很低,不论是我们所知的北京猿人化石,还是人类的“老祖母”——南方古猿露西的化石,都是古人类学家们在长期野外调查与发掘中,找到碎片才拼出来的相对完整的遗骸。

  

  发现于埃塞俄比亚的阿法南方古猿露西的骨骼(距今约320万年)(维基百科)

  有时候,仅仅找到头骨,也足以让古人类学家们欢呼雀跃,因为头骨蕴含着其他部位难以比拟的丰富信息。看面相就能找到很多信息:比如面相是像现代人类还是更像猿类,头骨是否浑圆,脑容量有多大,牙齿是否原始,等等。而高分辨率工业CT技术、3D复原、几何形态量化各个微小解剖部位等手段,使得古人类学者从头骨中获得了更多的形态数据。之后,通过对数据进行分析,就能绘制出人类祖先的系统发育树。

  

  许家窑人颞骨及其3D复原的内耳迷路(中科院古脊椎所官网)

  但是,通过这种方式绘制出的家谱,存在着显而易见的局限性。万一有些古人类,只是长得显老呢?

  

  同龄人的对比照片(yxlady.com

  2015年,一个古人类研究团队宣布,在南非找到了当地最早的古人类——纳莱迪人(Homo naledi),因为纳莱迪人具有许多原始古人类特征,比如较小的脑容量与南方古猿的相当,研究者推测这些古人类的生活年代距今约300万年。

  

  纳莱迪人复原图:看着这张古老的脸,我们幻想着远古祖先的模样(美国国家地理)

   两年后,综合光释光、古地磁、铀系等多种测年法得出的年代数据,却让大家大吃一惊,距今300万年的纳莱迪人实际上只有约30万年的年龄(距今约33.5万至23.6万年)——纳莱迪人并不是南方古猿的竞争对手,而是尼安德特人的邻居。由此可见,仅仅根据面相判断发现的头骨是原始还是现代,是无法真正得知其所处的演化位置的。毕竟,长得显老,也不是纳莱迪人的错啊!

  再比如在30万年前的非洲大陆,一些原始人类的头骨和早期现代人头骨的解剖学特征有一定的关联,可以说同时具备“原始”与“现代”的特征,而古人类学家也很难真正找到令人信服的、可以统一区分的标准。不仅如此,实际上在人类演化的各个阶段,比如处于直立人至智人阶段大多数古人类化石,都难以根据其骨骼形态特征而判断谁古老、谁年轻。

  所以说,再高级的摸骨、看相,也是远不够的。

  第二步 请问,您老高寿?

  如上文所言,测年结果改变了纳莱迪人的演化位置,也正是因为年代不清楚的原因,导致学术界对很多标本的重要性都存有疑问。古人类学家高星曾说过,“年代的准确性,对研究不同地区的古人类间的演化过程、时序和迁移路线等方面,可以起到决定性的作用。”

  但是,获取年代数据并不是一件简单的事情。在古人类研究中,能够获取到的年代一般分为“绝对年代”“相对年代”绝对年代一般指直接在化石上测得的年代。但考虑到古人类化石的稀有性,很少会有学者慷慨地拿出标本让年代学家打洞磨粉(取样)。虽然舍不得人骨“套”不到信服的数据,但是目前大多数学者们仍会选择更为保守的“相对年代”。

  相对年代的测定,包括对化石出土的层位,和化石一起出土的哺乳动物、文化遗物,化石中填充的沉积物等进行测年。正是因为用来测年的对象不同,往往会出现一个遗址、多个年代数据结果。同时,由于测年技术的不断改进,很多古老的遗址,也常常出现出时而老、时而新的年代数据。

   北京猿人遗址发现于1921年,算是最早发现于我国的古人类遗址,但直至今日,仍然不断地有新的年代数据刷新之前的记录。2009年《自然》杂志就曾以封面文章的形式,刊登了一个新的年代数据(距今约77万年,在此之前一般认为北京猿人遗址距今约50万年),将北京猿人置于“一个更冷的新年代”,对北京猿人的耐寒能力提出了挑战。

  

  2009年,《自然》杂志刊登了北京猿人遗址年代研究成果

  同样在1921年,非洲首次出现了古人类的踪迹。一群矿工在赞比亚布罗肯山发现了一个原始的颅骨,后来被命名为卡布韦人。古人类学家根据其头骨以及后来发现的人类骨骼,将其归入海德堡人。而学术界认为,海德堡人可能是欧洲尼安德特人与非洲现代人最后的共同祖先。

  近日,《自然》杂志的一篇文章,公布了最新的年代数据。不同于“变老”20万年的北京猿人,卡布韦人“年轻”了20万年(距今约32.4-27.4万年,在此之前一般认为距今约50万年)。

  也就是说,以卡布韦人为代表的这一支海德堡人,曾与智人祖先、纳莱迪人、尼安德特人等,同时出现在非洲南部?那祖先这一假说,岂不不攻自破?卡布韦人,究竟是怎样的存在?

  

  卡布韦人颅骨照片(ScienceNews 官网)

  第三步,遗传密码哪家强?

  基因检测,可谓当今家喻户晓的亲子鉴定黑科技。如果说近二十年来,是哪项研究彻底改写了许多古人类演化故事,非古DNA研究莫属。David Reich在《人类起源的故事》中,甚至将古DNA研究视作继碳十四测年之后的第二次考古学科学革命。似乎只要能提取到DNA信息,很多关于亲缘关系的问题就有了答案。

  根据基因研究,学术界提出“非洲多地区起源说(African multiregionalism)”,即在40万年—1万年间,由于气候原因,非洲大陆被分割成不同的生态区域,生活在不同区域的不同种群的人常常处于半隔离状态独立演化,并产生基因变异;但是隔一段时间,这些人群就会在交界点上发生基因交流,频繁的基因交流最终产生现代人类。2020年年初,有研究团队在现代西非人基因组中,发现平均有6.6%7%的古老基因来自一种“幽灵”古人类群体,这个群体可能就是当初人群基因交流的证据。

  而在关于卡布韦人的研究文章中,研究者也不免猜测,和智人祖先、尼安德特人、纳莱迪人等古老人群生活在同时代的卡布韦人,也许就属于这样的“幽灵人群”。

  不过,DNA信息极容易被降解,如果降解到一定程度,再先进的DNA测序手段也无法检测。距今约700—900万年左右,人与猿就走到了揖别的岔路口,但是迄今为止人类最古老DNA证据,也不超过40万年。

  2019年,《自然》发表一篇题为《DNA,请挪步:轮到古蛋白登场揭示人类史了》的报道,似乎带给了学术界新的希望。

  

  研究者们希望通过对古代蛋白质进行测序,来研究包括佛罗勒斯人在内的更多古老人类(来自《自然》杂志)

  同样保存了遗传密码的古蛋白质,似乎比古DNA更加稳定,能够保存的时间更久,留下来的概率也更大。古生物学家们甚至在距今1.3亿年前的始孔子鸟羽毛化石中,发现了保存至今的角蛋白。难怪有些乐观的学者们认为,未来,古蛋白质组学有希望解锁整棵人类演化树。

  从利用古蛋白在骨骼碎片中寻找人类骨骼、鉴定人类遗骸性别,到仅仅凭借蛋白质序列,就鉴定出夏河丹尼索瓦人,再到从距今180万年格鲁尼亚的德马尼西人遗骸中提取到古蛋白序列,看起来,古蛋白质研究确实势不可挡。

  20204月,《自然》再次发表了参与夏河丹尼索瓦人鉴定工作的Frido Welker及其团队的研究成果,此次被研究的先驱人(Homo antecessor),一般被认为是最早到达欧洲西部人科成员。根据曾经对骨骼、牙齿形态的研究,研究者认为先驱人既与尼安德特人有相似点,同时具有部分早期现代人的特征,这导致无法判断先驱人与直立人、尼安德特人以及早期现代人的关系。

  而在新的研究中,研究者不但在牙齿中提取到了古蛋白组信息,并且将蛋白质序列与来自格鲁吉亚的直立人、现代人的同类蛋白质进行比较,进而将先驱人放置到人类演化树上相应的位置,即先驱人是后来中晚更新世的古人类——包括现代人、尼安德特人和丹尼索沃人——的一个关系亲密的姐妹谱系。

  

  根据古蛋白组研究结果重新绘制的系统发育图,黄色箭头所指为先驱人(来自Welker F et al., 2020

  但是不置可否的是,古蛋白研究和测年技术、古DNA研究面临同样的问题,那就是对标本的破坏性。同时,蛋白种类繁多,序列及其结构较DNA也更为复杂,所以在实际操作中仍然困难重重。例如,蛋白质不能够像核酸序列一样扩增,故检测灵敏度有限,对样本中蛋白含量要求较高。此外,对于降解较为严重的样本,很难得到完整的肽段信息用于测序。

  不过,我们也看到,化石本身并不具有智慧,只有靠着一代代学者对这些牙齿和碎骨进行多学科分析、多角度探索,我们距离人类祖先图谱的完成、距离人类演化的真相才能越来越近吧。

  参考文献:

  1. Wu X J, Crevecoeur I, Liu W, et al. Temporal labyrinths of eastern Eurasian Pleistocene humans[J]. Proceedings of the National Academy of Sciences, 2014, 111(29): 10509-10513.

  2. Berger L R, Hawks J, Dirks P H G M, et al. Homo naledi and Pleistocene hominin evolution in subequatorial Africa[J]. Elife, 2017, 6: e24234.

  3. Shen G, Gao X, Gao B, et al. Age of Zhoukoudian Homo erectus determined with 26 Al/10 Be burial dating[J]. Nature, 2009, 458(7235): 198-200.

  4. Gr n R, Pike A, McDermott F, et al. Dating the skull from Broken Hill, Zambia, and its position in human evolution[J]. Nature, 2020: 1-4.

  5. Reich D. Who we are and how we got here: Ancient DNA and the new science of the human past[M]. Oxford University Press, 2018.

  6. Henn B M, Steele T E, Weaver T D. Clarifying distinct models of modern human origins in Africa[J]. Current opinion in genetics & development, 2018, 53: 148-156.

  7. Durvasula A, Sankararaman S. Recovering signals of ghost archaic introgression in African populations[J]. Science advances, 2020, 6(7): eaax5097.

  8. Warren M. Move over, DNA: ancient proteins are starting to reveal humanity's history[J]. Nature, 2019, 570(7762): 433.

  9. Welker F, Ramos-Madrigal J, Gutenbrunner P, et al. The dental proteome of Homo antecessor[J]. Nature, 2020: 1-4.

  10. Pan Y, Zheng W, Moyer A E, et al. Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis[J]. Proceedings of the National Academy of Sciences, 2016, 113(49): E7900-E7907.

  11. Chen F, Welker F, Shen C C, et al. A late middle pleistocene denisovan mandible from the tibetan plateau[J]. Nature, 2019, 569(7756): 409-412.

  

中国科学院科普云平台技术支持,中国科学院计算机网络信息中心运行
文章内容仅为作者观点,不代表中国科普博览网、中国科普博览网运行单位、中国科普博览网主办单位的任何观点或立场。
科普中国系列品牌网站: 科普中国
关闭